Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sheng Zhong, Jing Wang and Wei Wang*

School of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail:
wjwyj82@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.131$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,4,6-Trimethyl-1,3,5-tris(2-thiazolin-2-ylsulfanylmethyl)benzene

The title compound, $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}_{6}$, was synthesized by the reaction of 2,4,6-trimethyl-1,3,5-tris(bromomethyl)benzene and thiazoline-2-thione. In the molecule, two thiazoline rings are located on one side of the central benzene plane, while the third thiazoline ring is located on the other side of the central benzene plane.

Comment

A large number of flexible or rigid chain-linked dithioether ligands containing N-heterocyclic units have been synthesized and investigated due to their diverse coordination capabilities and the important properties of their metal complexes (Zheng et al., 2003; Bu et al., 2002; Hong et al., 2000). Thiazoline derivatives exhibit various acaricide properties. Recently, we synthesized a new thiazoline derivative, namely, 2,4,6-tri-methyl-1,3,5-tris(thiazoline-2-ylsulfanylmethyl)benzene, (I), the structure of which is reported here.

Received 3 September 2006
Accepted 12 September 2006

In the molecular structure of (I), there are three thiazoline rings A (atoms $\mathrm{C} 8-\mathrm{C} 10 / \mathrm{N} 1 / \mathrm{S} 1), B(\mathrm{C} 13-\mathrm{C} 15 / \mathrm{N} 2 / \mathrm{S} 4)$ and C (C18-C20/N3/S6). Rings B and C are located on one side of the central benzene ring while A is located on the opposite side. Atom C 9 deviates by 0.273 (8) \AA from the plane of the remaining four atoms in A. Atom C 18 attached to the sulfanyl group has a distorted trigonal geometry, the N3-C18-S5

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[125.9 (3) ${ }^{\circ}$] and S5-C18-S6 [115.8 (2) ${ }^{\circ}$] angles deviating significantly from the ideal $s p^{2}$-hybridized values.
As a result of $\pi-\pi$ conjugation, the $\mathrm{Cs} p^{2}-\mathrm{S}$ bonds ($\mathrm{S} 2-\mathrm{C} 8$, S3-C13 and S5-C18) are significantly shorter than the $\mathrm{C} s p^{3}-\mathrm{S}$ bonds (S2-C7, S3-C12 and S5-C17) (Table 1). The average lengths of the $\mathrm{Cs} p^{2}-\mathrm{S}$ and $\mathrm{Cs} p^{3}-\mathrm{S}$ bonds are 1.759 (7) and 1.820 (6) \AA, respectively. These bond lengths are in good agreement with the values of 1.726 (2)/1.800 (3) and 1.720 (8)/1.811 (2) Å for the corresponding bonds reported by Wang et al. (2004) and Wang et al. (2005).

Experimental

A solution of 2,4,6-trimethyl-1,3,5-tris(bromomethyl)benzene (2.00 g , 5 mmol) in ethanol (10 ml) was added dropwise to a mixture of thiazoline-2-thione ($1.79 \mathrm{~g}, 15 \mathrm{mmol}$), $\mathrm{KOH}(0.84 \mathrm{~g}, 15 \mathrm{mmol})$ and ethanol $(10 \mathrm{ml})$. The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from water (yield 70%, m.p. $421-422 \mathrm{~K}$). Analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}_{6}$: C 49.12, H 5.26, N 8.19%; found: C 49.14, H $5.31, \mathrm{~N} 8.23 \%$. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform and ethanol (1:3 $v / v)$.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}_{6}$
$M_{r}=513.82$
Monoclinic, $C 2 / c$
$a=19.834$ (4) A
$b=14.899$ (3) \AA
$c=16.797$ (3) \AA
$\beta=98.381(3)^{\circ}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.390 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.57 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.18 \times 0.14 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$V=4910.5(15) \AA^{3}$

Data collection

Bruker SMART CCD area-detector	12381 measured reflections
diffractometer	4341 independent reflections
φ and ω scans	2688 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.050$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=25.0^{\circ}$
$T_{\min }=0.617, T_{\max }=1.000$	
$\quad($ expected range $=0.583-0.944)$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0638 P)^{2}\right. \\
& \quad+0.8708 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C9	$1.787(4)$	S3-C13	$1.753(3)$
S2-C8	$1.745(3)$	S4-C15	$1.784(4)$
S2-C7	$1.812(3)$	S5-C18	$1.730(4)$
N3-C18-S5	$125.9(3)$	S5-C18-S6	$115.8(2)$

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA)$. For the CH_{2} groups, $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (carrier atom) and for the methyl groups they were set equal to $1.5 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the 05 L003 Project supported by the Education Department of Liao Ning Province in China.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Chen, W., Du, M., Kumar, B., Wang, W. Z. \& Zhang, R. H. (2002). Inorg. Chem. 41, 437-439.
Hong, M. C., Zhao, Y. J., Su, W. P., Cao, R., Fujita, M., Zhou, Z. Y. \& Chan, A. S. C. (2000). Angew. Chem. Int. Ed. 39, 2468-2470.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, W., Liu, H.-M., Zheng, Y. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1279-o1280.
Wang, W., Zhao, B., Zheng, P.-W. \& Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.
Zheng, Y., Du, M., Li, J. R., Zhang, R. H. \& Bu, X. H. (2003). Dalton Trans. pp. 1509-1514.

[^0]: © 2006 International Union of Crystallography All rights reserved

